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Abstract: Ground-level ozone (O3) is a key atmospheric gas that controls the oxidizing capacity of the
atmosphere and has significant health and environmental implications. Due to ongoing reductions
in the concentrations of O3 precursors, it is important to assess the variables influencing baseline
O3 to inform pollution control strategies. This study uses a statistical model to characterize daily
peak 8 h O3 concentrations at the Mount Bachelor Observatory (MBO), a rural mountaintop research
station in central Oregon, from 2006-2020. The model was constrained by seven predictive variables:
year, day-of-year, relative humidity (RH), aerosol scattering, carbon monoxide (CO), water vapor
(WV) mixing ratio, and tropopause pressure. RH, aerosol scattering, CO, and WV mixing ratio were
measured at MBO, and tropopause pressure was measured via satellite. For the full 15-year period,
the model represents 61% of the variance in daily peak 8 h O3, and all predictive variables have a
statistically significant (p < 0.05) impact on daily peak 8 h O3 concentrations. Our results show that
daily peak 8 h O3 concentrations at MBO are well-predicted by the model, thereby providing insight
into what affects baseline Oj levels at a rural site on the west coast of North America.
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1. Introduction

Ground-level ozone (O3) production occurs due to photochemical reactions between
oxides of nitrogen (NOx = nitric oxide (NO) + nitrogen dioxide (NO,)) and volatile organic
compounds (VOCs). High concentrations of O3 are harmful to human and ecosystem
health [1-3]. Consequently, Os is subject to regulatory action by the U.S. Environmental
Protection Agency (EPA). Compliance with the O3 National Ambient Air Quality Standard
(NAAQS) set by the U.S. EPA is achieved when the annual fourth-highest maximum daily
8 h average (MDAS) O3 concentration is no more than 70 parts per billion (ppb), averaged
over a three-year period [4]. Numerous studies have highlighted the successes and chal-
lenges of meeting this standard across the U.S. [5-8]. Due to the health and regulatory
implications of surface Og, it is important to have a comprehensive understanding of the
factors controlling O3 levels.

One factor that affects ambient O3 concentrations at surface U.S. sites is the amount of
U.S. background O3 (USBO), defined as the O3 that would be present in the absence of U.S.
anthropogenic emissions. However, since USBO cannot be observed directly, we instead
refer to baseline O3, which is the O3 concentration observed at a rural or remote site that has
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not been influenced by recent, local emissions [9]. Previous work has investigated baseline
O3 concentrations throughout the U.S. [9-26]. For example, Ambrose et al. [25] found that
baseline O3 at the Mount Bachelor Observatory (MBO)—a rural mountaintop research
station in central Oregon—was strongly influenced by long-range transport and upper
tropospheric/lower stratospheric intrusions. In addition, Zhang and Jaffe [26] identified
smoke and precursor emissions from wildfires as a source of baseline O3 at MBO.

Baseline O3 levels can have major implications for air quality management, especially
in the western U.S. (WUS). In many parts of the WUS, mean seasonal baseline O3 concen-
trations comprise up to 70% of the national O3 standard [24,27,28], making it challenging
for those areas to attain the O3 NAAQS. These high baseline O3 values are due in part to
stratospheric intrusions [6,16], intercontinental transport of O3 [17], and increased wildfire
activity over the past two decades [9,29].

Although many previous studies have assessed baseline O3 concentrations in the
U.S,, little has been done to examine the effect of individual meteorological and chemical
parameters on baseline Os at rural high-elevation sites in the WUS. This is noteworthy for
three reasons. First, such locations are far from major anthropogenic pollution sources.
Second, such sites are frequently impacted by free tropospheric air. These characteristics
make rural high-elevation sites well-suited for investigating what influences baseline O3
concentrations. Third, as discussed above, baseline Os is a large fraction of the ambient O3
for much of the WUS. Therefore, knowing which meteorological and chemical variables
exert the greatest influence on baseline O3 in the WUS is essential for creating pollution
control strategies aimed at lowering O3 levels in the region.

In the present study, we investigated the impact of several meteorological and chem-
ical parameters on O3 concentrations at MBO from 2006-2020 by using a machine learn-
ing/statistical model that is described in the next section. The goal of this work is to gain a
better understanding of what affects baseline O3 in the WUS.

2. Materials and Methods

The Mount Bachelor Observatory (MBO; 43.98° N, 121.69° W, 2764 m a.sl) is a
rural mountaintop research station located in central Oregon that was established in
2004 [30]. Continuous measurements of O3, carbon monoxide (CO), air temperature (Tq;;),
barometric pressure (BP), relative humidity (RH), and other chemical and meteorological
parameters have been made at MBO since its inception [25,31]. The MBO data have been
used previously in a number of trend and model assessments [9,26,32-35]. Since MBO is a
high-elevation site located far from major urban areas, it is an ideal site for examining the
variables that affect baseline O3 in the WUS.

In this study, hourly averaged data for several meteorological and chemical variables
were used to investigate what influenced O3 concentrations at MBO from 2006-2020. O3
was measured using a Dasibi 1008-RS analyzer (Dasibi Environmental Corporation, Glen-
dale, CA, USA) from 2006-2014 and an EcoTech Serinus 10 analyzer (EcoTech, Warren,
RI, USA) from 2014-2020 [25,32,36]. CO was measured using a Thermo 48C-Trace Level
Enhanced analyzer (Thermo Fisher Scientific, Waltham, MA, USA) from 2006-2012 and
a Picarro G2502 Cavity Ring-Down Spectrometer (Picarro, Santa Clara, CA, USA) from
2012-2020 [25,32,37]. Aerosol scattering was measured using a TSI nephelometer (TSI In-
corporated, Shoreview, MN, USA) [38-40]. Water vapor (WV) mixing ratios were calculated
following the methodology of Bolton [41]. RH measurements were also included.

Figure 1 shows the diurnal variability in median O3 concentrations for each season.
Consistent with previous studies conducted at MBO [25,36,42], we generally see a daytime
minimum and nighttime maximum in O3 due to upslope flow during the day and downs-
lope flow at night. This influenced how we chose to average the data, as discussed below.
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Figure 1. Diurnal variability in the median O3 concentration at MBO for spring (MAM), summer
(JJA), fall (SON), and winter (D]JF) 2006-2020.

For this work, all hourly data were converted to running 8 h averages. Only 8 h
averages calculated using at least six valid data points were included in the analysis. The
8 h averaged O3 data were used to calculate the daily peak 8 h O3 (hereafter referred to as
peak 8 h O3). To determine peak 8 h O3, we considered a 24 h period starting at 12:00 LST.
This was because O3 concentrations at MBO typically exhibit a nighttime maximum and a
daytime minimum (see Figure 1), consistent with other high-elevation sites [43-48]. As a
result, we selected the 24 h window to start at 12:00 LST to allow for more variability in the
timing of peak 8 h Os. This 24 h window was also used to calculate the 8 h averages of all
other hourly data. The 8 h averages of the other hourly data for the middle hour of the 8 h
period when peak 8 h O3 concentrations occurred were used in our analysis.

The 8 h averaged CO, aerosol scattering, RH, and WV mixing ratio data were used
to help constrain a Generalized Additive Model (GAM), which was run using the “mgcv”
package in R [49]. CO and aerosol scattering were used as model constraints because
higher CO and aerosol scattering values correspond to more polluted airmasses, which
likely contain higher concentrations of O3 and its precursors. RH and WV mixing ratio
were used to constrain the GAM because both are anticorrelated with O3 in rural, low-NOy
environments [50,51]. Daily, 1° x 1° tropopause pressure data from the Atmospheric
Infrared Sounder (AIRS) were used to further constrain the GAM [52]. Data were obtained
for the ascending orbits, which move from south-to-north across the Equator at 13:30 local
time [52]. Due to the 1° spatial resolution, the data are regionally representative. Daily
regional tropopause pressure was included as a model constraint because peak 8 h O3
at MBO is likely more influenced by lower-Oj air originating from the boundary layer
when the daily regional tropopause pressure is higher. In contrast, when the daily regional
tropopause pressure is lower, peak 8 h O3 at MBO is likely more influenced by higher-O;
air originating from the free troposphere.

We also tested other variables as model inputs, but they were not part of the final
model configuration. Specifically, we ran the Hybrid Single-Particle Lagrangian Integrated
Trajectory (HYSPLIT) model for each day using 1° x 1° Global Data Assimilation System
(GDAS) meteorological data to calculate 24 h back trajectories for MBO. These were used to
compute the direct transport distance and transport quadrant of airmasses. Even though
these two variables help characterize the airmasses affecting MBO, they were not retained
as model inputs because they were poorly correlated with peak 8 h O3 (result not shown).
Additionally, we tested observed, 8 h averaged T,;, and BP as model constraints because
high temperatures and stagnant conditions are often conducive to O3 formation. However,
neither T,;; nor BP were retained as model inputs because we found that peak 8 h O3
concentrations at MBO are weakly dependent on both parameters (results not shown).
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GAMs are statistical models that use a sum of smooth functions of predictive variables
to model a response variable [29,49,53,54]. Previous studies have used GAMs and other
statistical models to meteorologically adjust trends in urban O3 [55], examine the effect of
wildfire smoke on urban O3 concentrations [29,54], predict high-O3 events in the Houston
metropolitan area [56], and predict the impact of O3 on net ecosystem production at a
forested site in the Czech Republic [57]. However, to our knowledge, this is the first study
to use a GAM to investigate what influences baseline Oj levels in the WUS.

In this analysis, peak 8 h O3 was the response variable, and the predictors are listed in
Table 1. In addition to the model constraints discussed previously, “Year” and “day-of-year”
were included as predictive variables due to the interannual and seasonal variability in
the meteorological conditions impacting Oz concentrations. One GAM simulation was
done for the full 2006-2020 time period to assess the impact of each predictor on peak
8 h O3 concentrations at MBO. Our approach for configuring the GAM was similar to the
one used by Gong et al. [29]. For the smoothing function associated with each predictor,
we used penalized cubic regression splines (CRSs) with 10 degrees of freedom to account
for the complex, nonlinear relationship between peak 8 h O3 and the predictive variables.
Then, the seven selected predictors were added into the model one at a time to determine
whether they decreased the Akaike information criterion (AIC) and increased the adjusted
coefficient of determination (R?) [49,58,59]. Figure 2 shows that the AIC and adjusted R?
decreased and increased, respectively, when the predictors were included in the model.
Since the AIC continuously declined as each predictor was added, it is unlikely that our
model is overfit.

Table 1. List of parameters used to constrain the Generalized Additive Model (GAM) for this study.

Parameter Name

" .
Data Source Parameter Number (Unit) Description
1 1 Year (unitless) Year
1 2 DOQY (unitless) Day-of-year
2 3 RH_8h (%) 8 h average relative humidity
2 4 Scattering_8h (Mm~') 8 h average aerosol scattering
2 5 CO_8h (ppb) 8 h average carbon monoxide
2 6 WV_8h (g kg~ 1) 8 h average water vapor

mixing ratio
Daily, satellite-derived
regional tropopause pressure
* (1) Calculation, (2) MBO data archive, and (3) ascending orbit of the Atmospheric Infrared Sounder (AIRS).
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Figure 2. (a) Magnitude of adjusted R? and AIC with additional variables for MBO from 2006-2020.
(b) Changes in adjusted R? and AIC with additional variables for MBO from 2006-2020. See Table 1
for the parameter names corresponding to the parameter numbers.
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We further investigated baseline O3 concentrations in the WUS from 2006-2020 by
examining the seasonal variability in hourly and peak 8 h O3 at MBO and O3 measured via
ozonesonde at Trinidad Head (THD), CA. THD is a rural coastal site in northern California;
therefore, its O3 profile measurements are characteristic of baseline O3 values [21]. Since the
average ambient pressure at MBO is approximately 730 hPa, THD Oj profile data collected
at the 680-780 hPa level during 798 balloon flights were included in our analysis so that the
seasonality in O3 at the two sites could be compared.

3. Results and Discussion

The seasonal variability in O3 concentrations at MBO and THD (680-780 hPa) is
shown in Figure 3. Median Oj levels at MBO using all data ranged from 43 ppb in fall
to 49 ppb in spring, median peak 8 h O3 levels at MBO ranged from 46 ppb in winter to
53 ppb in spring, and median Oj levels at THD ranged from 48 ppb in winter to 55 ppb in
summer. These values are (1) in line with mean baseline O3 concentrations of approximately
50 ppb reported for 15 other high-elevation sites in the WUS [16] and (2) about 61-79%
of the 70 ppb O3 NAAQS. The slightly lower seasonal concentrations of hourly O3 at
MBO were likely attributable to daytime upslope flow of boundary-layer air containing
more moisture and less O3 compared to free tropospheric air. Meanwhile, the comparable
seasonal values of peak 8 h O3 at MBO and O3 at THD suggest that the two sites are affected
by similar airmasses.

80
MBO - hourly data
70 MBO - peak 8-h data |
THD
60
‘e
o
& 50
Om
40+
30 8
20 : :
Spring Summer Fall Winter
(MAM) (JIA) (SON) (DJF)

Figure 3. Seasonal O3 concentrations at MBO and THD from 2006-2020. Hourly O3 data were used
to generate the MBO boxplots, and 680-780 hPa O3 data collected via ozonesonde were used to
generate the THD boxplots. The bottom and top whiskers denote the 10th and 90th percentile values,
respectively, the central rectangles span the 25th percentile to the 75th percentile, and the horizontal
lines within the central rectangles represent the median values.

Figure 4 compares the observed versus GAM-predicted peak 8 h O3 at MBO from
2006-2020. Our model effectively predicted peak 8 h O3, with an adjusted R? of 0.61.
All seven predictive variables had a statistically significant impact on peak 8 h O3 levels
(p < 0.05). The effects of RH, WV mixing ratio, aerosol scattering, CO, and daily regional
tropopause pressure on peak 8 h O3 are shown in Figures 5-9. Peak 8 h O3 generally
decreased with increasing RH and WV mixing ratio (Figures 5 and 6). Since MBO is in a
rural, NOy-sensitive environment, these relationships are likely due to increased removal
of O3 by hydrogen oxide radicals (HOx = hydroxyl radical (OH) + hydroperoxyl radical
(HO»)) at higher RH and WV mixing ratios [51]. Aerosol scattering and CO values up
to approximately 30 Mm~! and 300 ppb, respectively, had a positive relationship with
peak 8 h O3 (Figures 7 and 8). This is consistent with higher levels of aerosol scattering,
CO, O3, and O3 precursors in more polluted airmasses. The response of peak 8 h O3 to
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aerosol scattering and CO values greater than about 30 Mm ! and 300 ppb, respectively,
is less clear because such high values are infrequently observed at MBO (see x-axes for
Figures 7b and 8b). This led to the large model uncertainty at very high aerosol scattering
and CO values. As shown in Figure 9, peak 8 h O3 concentrations at MBO slightly de-
creased with increasing daily regional tropopause pressure. This is likely due to the lesser
influence of free tropospheric air containing less moisture and more O3 when daily regional
tropopause pressure is higher.
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Figure 4. Observed versus GAM-predicted peak 8 h O3 at MBO from 2006—2020. The solid red line
and the dashed blue line are the trendline and 1:1 line, respectively.
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Figure 5. (a) Observed peak 8 h O3 (ppb) versus observed 8 h average RH (%) at MBO from 2006-2020.
The black dots show the individual data points, and the connected red squares show the median
peak 8 h O3 concentration, binned by 8 h average RH. The red squares are centered on the median 8 h
average RH and the median peak 8 h O3 concentration for each bin. (b) Partial response plot showing
the effect of 8 h average RH (%) on model-predicted peak 8 h O3 at MBO from 2006-2020. The tick
marks on the x-axis denote the density of observed 8 h average RH values. The spline smoothing
function for 8 h average RH is on the y-axis, with the label including its degrees of freedom (4.66).
The solid line shows the smooth curve, and the dashed lines indicate 2 standard error bounds.
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Figure 6. (a) Observed peak 8 h O3 (ppb) versus observed 8 h average WV mixing ratio (g kgfl) at
MBO from 2006-2020. The black dots show the individual data points, and the connected red squares
show the median peak 8 h O3 concentration, binned by 8 h average WV mixing ratio. The red squares
are centered on the median 8 h average WV mixing ratio and the median peak 8 h O3 concentration
for each bin. (b) Partial response plot showing the effect of 8 h average WV mixing ratio (g kg™!)
on model-predicted peak 8 h O3 at MBO from 2006-2020. The tick marks on the x-axis denote the
density of observed 8 h average WV mixing ratios. The spline smoothing function for 8 h average
WYV mixing ratio is on the y-axis, with the label including its degrees of freedom (4.86). The solid line
shows the smooth curve, and the dashed lines indicate 2 standard error bounds.
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Figure 7. (a) Observed peak 8 h O3 (ppb) versus observed 8 h average aerosol scattering (Mm™1)
at MBO from 2006-2020. The black dots show the individual data points, and the connected red
squares show the median peak 8 h O3 concentration, binned by 8 h average aerosol scattering. The
red squares are centered on the median 8 h average aerosol scattering value and the median peak
8 h O3 concentration for each bin. (b) Partial response plot showing the effect of 8 h average aerosol
scattering (Mm~!) on model-predicted peak 8 h O3 at MBO from 2006-2020. The tick marks on the
x-axis denote the density of observed 8 h average aerosol scattering values. The spline smoothing
function for 8 h average aerosol scattering is on the y-axis, with the label including its degrees of
freedom (7.58). The solid line shows the smooth curve, and the dashed lines indicate 2 standard error
bounds. Note that the x-axes for panels (a) and (b) are plotted on a logarithmic scale.
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Figure 8. (a) Observed peak 8 h O3 (ppb) versus observed 8 h average CO (ppb) at MBO from
2006-2020. The black dots show the individual data points, and the connected red squares show
the median peak 8 h O3 concentration, binned by 8 h average CO. The red squares are centered on
the median 8 h average CO concentration and the median peak 8 h O3 concentration for each bin.
(b) Partial response plot showing the effect of 8 h average CO (ppb) on model-predicted peak 8 h O3
at MBO from 2006—2020. The tick marks on the x-axis denote the density of observed 8 h average
CO concentrations. The spline smoothing function for 8 h average CO is on the y-axis, with the
label including its degrees of freedom (6.74). The solid line shows the smooth curve, and the dashed
lines indicate 2 standard error bounds. Note that the x-axes for panels (a) and (b) are plotted on a
logarithmic scale.
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Figure 9. (a) Observed peak 8 h O3 (ppb) versus observed daily regional tropopause pressure (hPa)
for MBO from 2006-2020. The black dots show the individual data points, and the connected red
squares show the median peak 8 h O3 concentration, binned by daily regional tropopause pressure.
The red squares are centered on the median daily regional tropopause pressure and the median
peak 8 h O3 concentration for each bin. (b) Partial response plot showing the effect of daily regional
tropopause pressure (hPa) on model-predicted peak 8 h O3 at MBO from 2006-2020. The tick marks
on the x-axis denote the density of observed daily regional tropopause pressure values. The spline
smoothing function for daily regional tropopause pressure is on the y-axis, with the label including
its degrees of freedom (3.81). The solid line shows the smooth curve, and the dashed lines indicate
2 standard error bounds.

Figure 10 shows the residuals (observed peak 8 h O3—GAM-predicted peak 8 h O3)
for the full 15-year period, binned by GAM-predicted peak 8 h O3 concentrations. Median
residuals for all bins were close to 0 ppb, indicating that the seven-parameter model
was unbiased across the O3 distribution. This further demonstrates that our model was
successful in predicting peak 8 h O3 concentrations at MBO.
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Figure 10. Residuals (observed peak 8 h O3 — GAM-predicted peak 8 h O3) at MBO from 2006-2020,
binned by GAM-predicted peak 8 h O3 concentrations. The dashed red line denotes 100% agreement
between observed and GAM-predicted peak 8 h O3 (i.e., residuals = 0 ppb). The components of each
boxplot have the same meanings as in Figure 3.

It needs to be noted that ongoing climate change will impact the parameters affecting
baseline O3 in the WUS. For example, U.S. wildland fires have burned more than 3.2 million
ha y ! in 10 of the past 18 years, and this increase in wildfire activity has primarily taken
place in the WUS [60]. Climate-related factors such as higher summertime temperatures
and drought have contributed to the increasing wildfire activity [61,62]. At MBO, more
wildfires have led to higher aerosol optical thickness (AOT) values over the past decade,
especially during summer and fall (Figure 11). Specifically, monthly AOT values were
approximately 0.4 in August and September 2017, August 2018, and September 2020. Since
wildfires are expected to increase in the future [63-65], such high monthly AOT values at
MBO may become more common. This may lead to increased suppression of Oz at MBO
because high aerosol concentrations reduce solar radiation, which is not conducive to high
O3 levels [66]. However, increased O3 suppression due to wildfires will only occur if MBO is
increasingly impacted by fresh smoke plumes with very high aerosol loading. If increasing
wildfires instead lead to an increase in the number of aged smoke plumes affecting MBO,
then an increase in the number of high-O3 days at MBO will likely occur. This is because
aged smoke plumes have lower aerosol loading, and O3 and aerosol scattering have a
positive relationship at MBO, particularly at lower aerosol scattering values (Figure 7).
Furthermore, higher temperatures and drier conditions during non-smoky periods in the
WUS will likely lead to more high-O3 days at MBO. This is because WV mixing ratios and
O3 are anticorrelated, and O3 production and temperature are positively correlated [26,67].
Overall, due to (1) the effects of climate change on O3 and (2) the impact of O3 levels at MBO
on downwind O3 concentrations [68,69], future studies should consider reinvestigating the
variables influencing O3 concentrations at this rural site.

Two other items should also be the focus of future studies. First, future work should
use a GAM to predict hourly O3 concentrations at MBO. This will likely lead to an under-
standing of which variables have the greatest impact on the diurnal cycle of O3 at MBO.
Second, future studies should use a GAM constrained with surface observations of daily
maximum Oj3 and satellite observations of free tropospheric O3 to predict daily maximum
O3 concentrations for MBO. For this analysis, the smoothing functions associated with the
two predictive variables listed above will need to be penalized CRSs with two degrees of
freedom. If this work is undertaken by future studies, the results may show how much
daily maximum O3 concentrations at MBO are affected by transport of free tropospheric
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Os. Such findings would further improve our understanding of what influences baseline
O3 concentrations in the WUS.
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Figure 11. Monthly aerosol optical thickness (AOT) at MBO from 2006-2020. AOT data with 1°
resolution were taken from the MODIS Aqua satellite.

4. Conclusions

This study examined the effects of several meteorological and chemical variables on
peak 8 h O3 at the Mount Bachelor Observatory (MBO) from 2006-2020. The analysis was
completed using a Generalized Additive Model (GAM) constrained by seven parameters
(Table 1). Over the 15-year period, our model successfully predicted the observed peak
8 h O3, with an adjusted R? of 0.61. All predictive variables—year, day-of-year, daily
regional tropopause pressure, and 8 h averaged relative humidity (RH), aerosol scattering,
carbon monoxide (CO), and water vapor (WV) mixing ratio—significantly affected peak
8 h O3 concentrations (p < 0.05). Our results show that peak 8 h O3 levels at MBO were
well-captured by the seven-parameter model. Therefore, since meeting the national O3
standard continues to be challenging for much of the western U.S. (WUS), future work
should consider using this study’s methodology to assess what influences baseline Os
concentrations at other rural or remote sites in the region. This will help inform pollution
control strategies aimed at reducing O3 levels in the WUS.
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The tropopause pressure data used in this study are publicly available via the NASA GES DISC
database (https://doi.org/10.5067/ Aqua/AIRS/DATA303, accessed on 20 September 2022). The
aerosol optical thickness data from the MODIS Aqua satellite used in this study can be found on the
MODIS Adaptive Processing System Services website (http://dx.doi.org/10.5067/MODIS/MYD08_
M3.006, accessed on 20 June 2022). These data sources are cited in the References [52,70-72].

Acknowledgments: The authors thank Kai-Lan Chang of the Cooperative Institute for Research in
Environmental Sciences at the University of Colorado for providing a single file that contained the
Trinidad Head O3 profile data.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References

1.  Laurence, J.A. Ecological effects of ozone: Integrating exposure and response with ecosystem dynamics and function. Environ.
Sci. Policy 1998, 1, 179-184. [CrossRef]

2. Lippmann, M. Health effects of tropospheric ozone. Environ. Sci. Technol. 1991, 25, 1954-1962. [CrossRef]

3.  Zhang, J.; Wei, Y.; Fang, Z. Ozone Pollution: A Major Health Hazard Worldwide. Front. Immunol. 2019, 10, 2518. [CrossRef]
[PubMed]

4. U.S.EPA. NAAQS Table. Criteria Air Pollutants. 2016. Available online: https:/ /www.epa.gov/ criteria-air-pollutants /naaqs-table
(accessed on 30 June 2022).

5. Jaffe, D.A.; Ninneman, M.; Chan, H.C. NOy and O3 Trends at U.S. Non-Attainment Areas for 1995-2020: Influence of COVID-19
Reductions and Wildland Fires on Policy-Relevant Concentrations. J. Geophys. Res. Atmos. 2022, 127, €2021JD036385. [CrossRef]
[PubMed]

6. Langford, A.O.; Alvarez, R]., II; Brioude, J.; Fine, R.; Gustin, M.S.; Lin, M.Y.; Marchbanks, R.D.; Pierce, R.B.; Sandberg, S.P;
Senff, C.J.; et al. Entrainment of stratospheric air and Asian pollution by the convective boundary layer in the southwestern U.S.
J. Geophys. Res. Atmos. 2017, 122, 1312-1337. [CrossRef]

7. Nussbaumer, C.M.; Cohen, R.C. The Role of Temperature and NOy in Ozone Trends in the Los Angeles Basin. Environ. Sci.
Technol. 2020, 54, 15652-15659. [CrossRef]

8. Simon, H.; Reff, A.; Wells, B.; Xing, J.; Frank, N. Ozone Trends Across the United States over a Period of Decreasing NOx and
VOC Emissions. Environ. Sci. Technol. 2015, 49, 186-195. [CrossRef]

9. Jaffe, D.A.; Cooper, O.R; Fiore, A.M.; Henderson, B.H.; Tonnesen, G.S.; Russell, A.G.; Henze, D.K,; Langford, A.O.; Lin, M;
Moore, T. Scientific assessment of background ozone over the U.S.: Implications for air quality management. Elem. Sci. Anthr.
2018, 6, 56. [CrossRef]

10. Dolwick, P.; Akhtar, E; Baker, K.R.; Possiel, N.; Simon, H.; Tonnesen, G. Comparison of background ozone estimates over the
western United States based on two separate model methodologies. Atmos. Environ. 2015, 109, 282-296. [CrossRef]

11.  Emery, C,; Jung, J.; Downey, N.; Johnson, J.; Jimenez, M.; Yarwood, G.; Morris, R. Regional and global modeling estimates of
policy relevant background ozone over the United States. Atmos. Environ. 2012, 47, 206-217. [CrossRef]

12.  Fiore, AM.; Jacob, D.J.; Bey, L; Yantosca, R.M.; Field, B.D.; Fusco, A.C.; Wilkinson, J.G. Background ozone over the United States
in summer: Origin, trend, and contribution to pollution episodes. |. Geophys. Res. Earth Surf. 2002, 107, ACH-11-1-ACH 11-25.
[CrossRef]

13. Fiore, A.; Jacob, D.J; Liu, H.; Yantosca, R.M.; Fairlie, T.D.; Li, Q. Variability in surface ozone background over the United States:
Implications for air quality policy. . Geophys. Res. Earth Surf. 2003, 108, ACH-19-1-ACH-19-12. [CrossRef]

14. Fiore, AM.; Oberman, J.T,; Lin, M.Y.; Zhang, L.; Clifton, O.E.; Jacob, D.].; Naik, V.; Horowitz, L.W.; Pinto, ].P.; Milly, G.P.
Estimating North American background ozone in U.S. surface air with two independent global models: Variability, uncertainties,
and recommendations. Atmos. Environ. 2014, 96, 284-300. [CrossRef]

15. Lefohn, A.S.; Emery, C.; Shadwick, D.; Wernli, H.; Jung, J.; Oltmans, S.J. Estimates of background surface ozone concentrations in
the United States based on model-derived source apportionment. Atmos. Environ. 2014, 84, 275-288. [CrossRef]

16. Lin, M.; Fiore, AM.; Cooper, O.R.; Horowitz, LW.; Langford, A.O.; Levy, H., II; Johnson, B.J.; Naik, V.; Oltmans, S.J.;
Senff, C.J.; et al. Springtime high surface ozone events over the western United States: Quantifying the role of stratospheric
intrusions. J. Geophys. Res. Earth Surf. 2012, 117, DO0OV22. [CrossRef]

17.  Miyazaki, K.; Neu, J.L.; Osterman, G.; Bowman, K. Changes in US background ozone associated with the 2011 turnaround in
Chinese NOx emissions. Environ. Res. Commun. 2022, 4, 045003. [CrossRef]

18. Parrish, D.D.; Ennis, C.A. Estimating background contributions and US anthropogenic enhancements to maximum ozone
concentrations in the northern US. Atmos. Chem. Phys. 2019, 19, 12587-12605. [CrossRef]

19. Parrish, D.D.; Young, L.M.; Newman, M.H.; Aikin, K.C.; Ryerson, T.B. Ozone Design Values in Southern California’s Air Basins:
Temporal Evolution and U.S. Background Contribution. J. Geophys. Res. Atmos. 2017, 122, 11-166, 182. [CrossRef]

20. DParrish, D.D.; Faloona, I.C.; Derwent, R.G. Observational-based assessment of contributions to maximum ozone concentrations in

the western United States. J. Air Waste Manag. Assoc. 2022, 72, 434-454. [CrossRef]


https://doi.org/10.5067/Aqua/AIRS/DATA303
http://dx.doi.org/10.5067/MODIS/MYD08_M3.006
http://dx.doi.org/10.5067/MODIS/MYD08_M3.006
http://doi.org/10.1016/S1462-9011(98)00024-0
http://doi.org/10.1021/es00024a001
http://doi.org/10.3389/fimmu.2019.02518
http://www.ncbi.nlm.nih.gov/pubmed/31736954
https://www.epa.gov/criteria-air-pollutants/naaqs-table
http://doi.org/10.1029/2021JD036385
http://www.ncbi.nlm.nih.gov/pubmed/35942329
http://doi.org/10.1002/2016JD025987
http://doi.org/10.1021/acs.est.0c04910
http://doi.org/10.1021/es504514z
http://doi.org/10.1525/elementa.309
http://doi.org/10.1016/j.atmosenv.2015.01.005
http://doi.org/10.1016/j.atmosenv.2011.11.012
http://doi.org/10.1029/2001JD000982
http://doi.org/10.1029/2003JD003855
http://doi.org/10.1016/j.atmosenv.2014.07.045
http://doi.org/10.1016/j.atmosenv.2013.11.033
http://doi.org/10.1029/2012JD018151
http://doi.org/10.1088/2515-7620/ac619b
http://doi.org/10.5194/acp-19-12587-2019
http://doi.org/10.1002/2016JD026329
http://doi.org/10.1080/10962247.2022.2050962

Atmosphere 2022, 13, 1883 12 of 13

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.
42.

43.

44.

45.

Stauffer, R M.; Thompson, A.M.; Oltmans, S.J.; Johnson, B.]. Tropospheric ozonesonde profiles at long-term U.S. monitoring sites:
2. Links between Trinidad Head, CA, profile clusters and inland surface ozone measurements. J. Geophys. Res. Atmos. 2017, 122,
1261-1280. [CrossRef]

Wang, H.; Jacob, D.J.; Le Sager, P; Streets, D.G.; Park, R.J.; Gilliland, A.B.; van Donkelaar, A. Surface ozone background in the
United States: Canadian and Mexican pollution influences. Atmos. Environ. 2009, 43, 1310-1319. [CrossRef]

Yan, Q.; Wang, Y.; Cheng, Y.; Li, ]. Summertime Clean-Background Ozone Concentrations Derived from Ozone Precursor
Relationships are Lower than Previous Estimates in the Southeast United States. Environ. Sci. Technol. 2021, 55, 12852-12861.
[CrossRef] [PubMed]

Zhang, L.; Jacob, D.J.; Downey, N.V.; Wood, D.A.; Blewitt, D.; Carouge, C.C.; van Donkelaar, A.; Jones, D.B.; Murray, L.; Wang, Y.
Improved estimate of the policy-relevant background ozone in the United States using the GEOS-Chem global model with
1/2° x 2/3° horizontal resolution over North America. Atmos. Environ. 2011, 45, 6769—-6776. [CrossRef]

Ambrose, ].L.; Reidmiller, D.R.; Jaffe, D.A. Causes of high O3 in the lower free troposphere over the Pacific Northwest as observed
at the Mt. Bachelor Observatory. Atmos. Environ. 2011, 45, 5302-5315. [CrossRef]

Zhang, L.; Jaffe, D.A. Trends and sources of ozone and sub-micron aerosols at the Mt. Bachelor Observatory (MBO) during
2004-2015. Atmos. Environ. 2017, 165, 143-154. [CrossRef]

Jaffe, D.A.; Zhang, L. Meteorological anomalies lead to elevated O 3 in the western U.S. in June 2015. Geophys. Res. Lett. 2017, 44,
1990-1997. [CrossRef]

Jaffe, D.A,; Fiore, AM.; Keating, T.]. Importance of background ozone for air quality management. The Magazine for Environmental
Managers, 1 November 2020; 1-5. Available online: https://pubs.awma.org/flip/EM-Nov-2020/jaffe.pdf (accessed on 19 July 2022).
Gong, X.; Kaulfus, A.; Nair, U,; Jaffe, D.A. Quantifying O3 Impacts in Urban Areas Due to Wildfires Using a Generalized Additive
Model. Environ. Sci. Technol. 2017, 51, 13216-13223. [CrossRef]

Jaffe, D.; Prestbo, E.; Swartzendruber, P.; Weisspenzias, P; Kato, S.; Takami, A.; Hatakeyama, S.; Kajii, Y. Export of atmospheric
mercury from Asia. Atmos. Environ. 2005, 39, 3029-3038. [CrossRef]

Baylon, P; Jaffe, D.A.; Hall, S.R.; Ullmann, K.; Alvarado, M.J.; Lefer, B.L. Impact of Biomass Burning Plumes on Photolysis Rates
and Ozone Formation at the Mount Bachelor Observatory. J. Geophys. Res. Atmos. 2018, 123, 2272-2284. [CrossRef]

Gratz, L.E; Jaffe, D.A.; Hee, ].R. Causes of increasing ozone and decreasing carbon monoxide in springtime at the Mt. Bachelor
Observatory from 2004 to 2013. Atmos. Environ. 2015, 109, 323-330. [CrossRef]

Zhang, L.; Jacob, D.J.; Boersma, K.F; Jaffe, D.A.; Olson, J.R.; Bowman, K.W.; Worden, J.R.; Thompson, A.M.; Avery, M.A;
Cohen, R.C,; et al. Transpacific transport of ozone pollution and the effect of recent Asian emission increases on air quality in
North America: An integrated analysis using satellite, aircraft, ozonesonde, and surface observations. Atmos. Chem. Phys. 2008, 8,
6117-6136. [CrossRef]

Gaudel, A.; Cooper, O.R.; Ancellet, G.; Barret, B.; Boynard, A.; Burrows, ].P; Clerbaux, C.; Coheur, P-F,; Cuesta, J.; Cuevas, E.; et al.
Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global
atmospheric chemistry model evaluation. Elem. Sci. Anthr. 2018, 6, 39. [CrossRef]

Qu, Z.; Henze, D.K.; Cooper, O.R.; Neu, J.L. Impacts of global NOx inversions on NO2 and ozone simulations. Atmos. Chem. Phys.
2020, 20, 13109-13130. [CrossRef]

Weiss-Penzias, P,; Jaffe, D.A.; Swartzendruber, P.; Dennison, J.B.; Chand, D.; Hafner, W.; Prestbo, E. Observations of Asian air
pollution in the free troposphere at Mount Bachelor Observatory during the spring of 2004. J. Geophys. Res. Earth Surf. 2006,
111, D10304. [CrossRef]

Chen, H.; Karion, A.; Rella, C.W.; Winderlich, J.; Gerbig, C.; Filges, A.; Newberger, T.; Sweeney, C.; Tans, PP. Accurate
measurements of carbon monoxide in humid air using the cavity ring-down spectroscopy (CRDS) technique. Atmos. Meas. Tech.
2013, 6, 1031-1040. [CrossRef]

Briggs, N.L.; Jaffe, D.A.; Gao, H.; Hee, ].R.; Baylon, PM.; Zhang, Q.; Zhou, S.; Collier, S.C.; Sampson, P.D.; Cary, R.A. Particulate
Matter, Ozone, and Nitrogen Species in Aged Wildfire Plumes Observed at the Mount Bachelor Observatory. Aerosol Air Qual. Res.
2016, 16, 3075-3087. [CrossRef]

Zhou, S.; Collier, S.; Jaffe, D.A.; Briggs, N.L.; Hee, J.; Sedlacek, A.]., III; Kleinman, L.; Onasch, T.B.; Zhang, Q. Regional influence of
wildfires on aerosol chemistry in the western US and insights into atmospheric aging of biomass burning organic aerosol. Atmos.
Chem. Phys. 2017, 17, 2477-2493. [CrossRef]

Zhou, S.; Collier, S.; Jaffe, D.A.; Zhang, Q. Free tropospheric aerosols at the Mt. Bachelor Observatory: More oxidized and higher
sulfate content compared to boundary layer aerosols. Atmos. Chem. Phys. 2019, 19, 1571-1585. [CrossRef]

Bolton, D. The Computation of Equivalent Potential Temperature. Mon. Weather Rev. 1980, 108, 1046-1053. [CrossRef]
Reidmiller, D.R.; Jaffe, D.A.; Fischer, E.V.; Finley, B. Nitrogen oxides in the boundary layer and free troposphere at the Mt.
Bachelor Observatory. Atmos. Chem. Phys. 2010, 10, 6043-6062. [CrossRef]

Aneja, V.P; Businger, S.; Li, Z.; Claiborn, C.S.; Murthy, A. Ozone climatology at high elevations in the southern Appalachians.
J. Geophys. Res. Earth Surf. 1991, 96, 1007. [CrossRef]

Aneja, V.P; Li, Z. Characterization of ozone at high elevation in the eastern United States: Trends, seasonal variations, and
exposure. |. Geophys. Res. Earth Surf. 1992, 97, 9873-9888. [CrossRef]

Lefohn, A.S.; Shadwick, D.S.; Mohnen, V.A. The characterization of ozone concentrations at a select set of high-elevation sites in
the eastern United States. Environ. Pollut. 1990, 67, 147-178. [CrossRef]


http://doi.org/10.1002/2016JD025254
http://doi.org/10.1016/j.atmosenv.2008.11.036
http://doi.org/10.1021/acs.est.1c03035
http://www.ncbi.nlm.nih.gov/pubmed/34546042
http://doi.org/10.1016/j.atmosenv.2011.07.054
http://doi.org/10.1016/j.atmosenv.2011.06.056
http://doi.org/10.1016/j.atmosenv.2017.06.042
http://doi.org/10.1002/2016GL072010
https://pubs.awma.org/flip/EM-Nov-2020/jaffe.pdf
http://doi.org/10.1021/acs.est.7b03130
http://doi.org/10.1016/j.atmosenv.2005.01.030
http://doi.org/10.1002/2017JD027341
http://doi.org/10.1016/j.atmosenv.2014.05.076
http://doi.org/10.5194/acp-8-6117-2008
http://doi.org/10.1525/elementa.291
http://doi.org/10.5194/acp-20-13109-2020
http://doi.org/10.1029/2005JD006522
http://doi.org/10.5194/amt-6-1031-2013
http://doi.org/10.4209/aaqr.2016.03.0120
http://doi.org/10.5194/acp-17-2477-2017
http://doi.org/10.5194/acp-19-1571-2019
http://doi.org/10.1175/1520-0493(1980)108&lt;1046:TCOEPT&gt;2.0.CO;2
http://doi.org/10.5194/acp-10-6043-2010
http://doi.org/10.1029/90JD02022
http://doi.org/10.1029/92JD00503
http://doi.org/10.1016/0269-7491(90)90080-V

Atmosphere 2022, 13, 1883 13 of 13

46.

47.

48.

49.
50.

51.

52.

53.
54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

Lefohn, A.S.; Mohnen, V.A. The Characterization of Ozone, Sulfur Dioxide, and Nitrogen Dioxide for Selected Monitoring Sites in
the Federal Republic of Germany. J. Air Pollut. Control Assoc. 1986, 36, 1329-1337. [CrossRef]

Mohnen, V.A,; Hogan, A.; Coffey, P. Ozone measurements in rural areas. |. Geophys. Res. Earth Surf. 1977, 82, 5889-5895.
[CrossRef]

Naja, M,; Lal, S.; Chand, D. Diurnal and seasonal variabilities in surface ozone at a high altitude site Mt Abu (24.6°N, 72.7°E,
1680 m asl) in India. Atmos. Environ. 2003, 37, 4205-4215. [CrossRef]

Wood, S.N. Generalized Additive Models: An Introduction with R; Chapman & Hall/CRC: Boca Raton, FL, USA, 2006.

Kavassalis, S.C.; Murphy, ].G. Understanding ozone-meteorology correlations: A role for dry deposition. Geophys. Res. Lett. 2017,
44,2922-2931. [CrossRef]

Lu, X.; Zhang, L.; Shen, L. Meteorology and Climate Influences on Tropospheric Ozone: A Review of Natural Sources, Chemistry,
and Transport Patterns. Curr. Pollut. Rep. 2019, 5, 238-260. [CrossRef]

Texeira, J. AIRS/Aqua L3 Daily Standard Physical Retrieval (AIRS-only) 1 degree x 1 degree V006. Available online:
https:/ /disc.gsfc.nasa.gov/datasets/ AIRS3STD_006/summary (accessed on 20 September 2022).

Hastie, T.].; Tibshirani, R.]. Generalized Additive Models; Chapman & Hall/CRC: Boca Raton, FL, USA, 1990.

McClure, C.D.; Jaffe, D.A. Investigation of high ozone events due to wildfire smoke in an urban area. Atmos. Environ. 2018, 194,
146-157. [CrossRef]

Camalier, L.; Cox, W.; Dolwick, P. The effects of meteorology on ozone in urban areas and their use in assessing ozone trends.
Atmos. Environ. 2007, 41, 7127-7137. [CrossRef]

Sun, W,; Palazoglu, A.; Singh, A.; Zhang, H.; Wang, Q.; Zhao, Z.; Cao, D. Prediction of surface ozone episodes using clusters
based generalized linear mixed effects models in Houston—-Galveston—-Brazoria area, Texas. Atmos. Pollut. Res. 2015, 6, 245-253.
[CrossRef]

Juran, S.; Edwards-Jonasova, M.; Cudlin, P.; Zapletal, M.; gigut, L.; Grace, J.; Urban, O. Prediction of ozone effects on net
ecosystem production of Norway spruce forest. iForest-Biogeos. For. 2018, 11, 743-750. [CrossRef]

Cavanaugh, J.E.; Neath, A.A. The Akaike information criterion: Background, derivation, properties, application, interpretation,
and refinements. WIREs Comput. Stat. 2019, 11, e1460. [CrossRef]

CFI Team. Adjusted R-Squared. Available online: https:/ /corporatefinanceinstitute.com/resources/knowledge/other/adjusted-r-squared /
(accessed on 1 October 2022).

National Interagency Fire Center. Fire information: Statistics. Available online: https://www.nifc.gov/fire-information/statistics
(accessed on 5 July 2022).

Aldersley, A.; Murray, S.J.; Cornell, S.E. Global and regional analysis of climate and human drivers of wildfire. Sci. Total Environ.
2011, 409, 3472-3481. [CrossRef] [PubMed]

Decker, Z.CJ.; Zarzana, KJ.; Coggon, M.; Min, K.-E.; Pollack, I.; Ryerson, T.B.; Peischl, J.; Edwards, P.; Dubé, W.P;
Markovic, M.Z.; et al. Nighttime Chemical Transformation in Biomass Burning Plumes: A Box Model Analysis Initialized with
Aircraft Observations. Environ. Sci. Technol. 2019, 53, 2529-2538. [CrossRef]

Moritz, M.A; Parisien, M.-A.; Batllori, E.; Krawchuk, M.A.; Van Dorn, J.; Ganz, D.].; Hayhoe, K. Climate change and disruptions
to global fire activity. Ecosphere 2012, 3, 1-22. [CrossRef]

Pechony, O.; Shindell, D.T. Driving forces of global wildfires over the past millennium and the forthcoming century. Proc. Natl.
Acad. Sci. USA 2010, 107, 19167-19170. [CrossRef]

Val Martin, M.; Heald, C.L.; Lamarque, J.-F; Tilmes, S.; Emmons, L.K.; Schichtel, B.A. How emissions, climate, and land use
change will impact mid-century air quality over the United States: A focus on effects at national parks. Atmos. Chem. Phys. 2015,
15, 2805-2823. [CrossRef]

Buysse, C.E.; Kaulfus, A.; Nair, U,; Jaffe, D.A. Relationships between Particulate Matter, Ozone, and Nitrogen Oxides during
Urban Smoke Events in the Western US. Environ. Sci. Technol. 2019, 53, 12519-12528. [CrossRef]

Sillman, S.; Samson, P.J. Impact of temperature on oxidant photochemistry in urban, polluted rural and remote environments.
J. Geophys. Res. Earth Surf. 1995, 100, 11497-11508. [CrossRef]

Baylon, PM.; Jaffe, D.A.; Pierce, R.B.; Gustin, M.S. Interannual Variability in Baseline Ozone and Its Relationship to Surface Ozone
in the Western U.S. Environ. Sci. Technol. 2016, 50, 2994-3001. [CrossRef] [PubMed]

Wigder, N.L.; Jaffe, D.A.; Herron-Thorpe, F.L.; Vaughan, ] K. Influence of daily variations in baseline ozone on urban air quality
in the United States Pacific Northwest. J. Geophys. Res. Atmos. 2013, 118, 3343-3354. [CrossRef]

Research Works Archive. Search: Mt. Bachelor Observatory. Available online: https://digital.lib.washington.edu/researchworks/
discover?scope=%2F&query=%22mt.+bachelor+observatory%22&submit=&filtertype_0O=title&filter_relational_operator_0=

contains&filter_O=data (accessed on 18 April 2022).

NOAA GML. GML Data Finder. Available online: https://gml.noaa.gov/dv/data/index.php?category=0Ozoneé&type=Balloon&
site=THD (accessed on 14 July 2022).

Platnick, S.; Hubanks, P; Meyer, K.; King, M.D. MODIS Atmosphere L3 Monthly Product (08_M3). Available online:
http://dx.doi.org/10.5067 /MODIS/MYD08_M3.006 (accessed on 20 June 2022).


http://doi.org/10.1080/00022470.1986.10466182
http://doi.org/10.1029/JC082i037p05889
http://doi.org/10.1016/S1352-2310(03)00565-X
http://doi.org/10.1002/2016GL071791
http://doi.org/10.1007/s40726-019-00118-3
https://disc.gsfc.nasa.gov/datasets/AIRS3STD_006/summary
http://doi.org/10.1016/j.atmosenv.2018.09.021
http://doi.org/10.1016/j.atmosenv.2007.04.061
http://doi.org/10.5094/APR.2015.029
http://doi.org/10.3832/ifor2805-011
http://doi.org/10.1002/wics.1460
https://corporatefinanceinstitute.com/resources/knowledge/other/adjusted-r-squared/
https://www.nifc.gov/fire-information/statistics
http://doi.org/10.1016/j.scitotenv.2011.05.032
http://www.ncbi.nlm.nih.gov/pubmed/21689843
http://doi.org/10.1021/acs.est.8b05359
http://doi.org/10.1890/ES11-00345.1
http://doi.org/10.1073/pnas.1003669107
http://doi.org/10.5194/acp-15-2805-2015
http://doi.org/10.1021/acs.est.9b05241
http://doi.org/10.1029/94JD02146
http://doi.org/10.1021/acs.est.6b00219
http://www.ncbi.nlm.nih.gov/pubmed/26882468
http://doi.org/10.1029/2012JD018738
https://digital.lib.washington.edu/researchworks/discover?scope=%2F&query=%22mt.+bachelor+observatory%22&submit=&filtertype_0=title&filter_relational_operator_0=contains&filter_0=data
https://digital.lib.washington.edu/researchworks/discover?scope=%2F&query=%22mt.+bachelor+observatory%22&submit=&filtertype_0=title&filter_relational_operator_0=contains&filter_0=data
https://digital.lib.washington.edu/researchworks/discover?scope=%2F&query=%22mt.+bachelor+observatory%22&submit=&filtertype_0=title&filter_relational_operator_0=contains&filter_0=data
https://gml.noaa.gov/dv/data/index.php?category=Ozone&type=Balloon&site=THD
https://gml.noaa.gov/dv/data/index.php?category=Ozone&type=Balloon&site=THD
http://dx.doi.org/10.5067/MODIS/MYD08_M3.006

	Introduction 
	Materials and Methods 
	Results and Discussion 
	Conclusions 
	References

